Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microbes Infect ; 25(3): 105042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36075515

RESUMO

Human ascariasis has been characterized as the most prevalent neglected tropical disease worldwide. There is an urgent need for search to alternative prevention and control methods for ascariasis. Here we aimed to establish a protocol of oral immunization with a previously described chimera protein capable of resist through digestion and induce mucous protection against Ascaris suum infection. Mice were oral immunized with seven doses with one day interval and challenged with A. suum ten days after the last dose. In vitro digestion showed that 64% of chimeric protein was bioaccessible for absorption after digestion. Immunized mice display 66,2% reduction of larval burden in lungs compared to control group. In conclusion we demonstrated that oral immunization with chimera protein protects the host against A. suum larval migration leading to less pronounced histopathological lesions.


Assuntos
Ascaríase , Ascaris suum , Vacinas , Humanos , Animais , Camundongos , Ascaríase/prevenção & controle , Antígenos de Helmintos/genética , Imunização , Proteínas Recombinantes de Fusão/genética
2.
Exp Parasitol ; 238: 108267, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35550886

RESUMO

BACKGROUND: Human ascariasis is one of the most prevalent neglected tropical diseases worldwide. The immune response during human ascariasis is characterized by Th2 polarization and a mixed Th2/Th17 response during the pathogenesis of experimental larval ascariasis. Cytokines and other pro-inflammatory mediators, such as nitric oxide (NO), are involved in helminthic infections. However, the role of NO in ascariasis remains unclear. OBJECTIVES: Given the importance of NO in inflammation, we aimed to determine the immunological and histopathological alterations in the livers of C57BL/6 iNOS-/- mice during A. suum infection. METHODS: In this study, parasitic load was evaluated in the livers of wild type C57BL/6 and C57BL/6 iNOS-/- mice infected with A. suum. Histopathological and morphometric analyses and analysis of serum cytokines via Cytometric Bead Array were performed, and the activity of eosinophil peroxidase and myeloperoxidase of neutrophils in the tissues were determined. RESULTS: The results showed that NO is important for controlling parasitic load during infection by A. suum. C57BL/6iNOS-/- mice showed reduced inflammatory processes and less tissue damage during liver larval migration of A. suum, which is associated with a reduction in serum levels of pro-inflammatory cytokines. CONCLUSIONS: We demonstrated that NO is a crucial inflammatory molecule during Ascaris sp. infection and controls the establishment of the parasite and the development of the host immune response in the liver.


Assuntos
Ascaríase , Ascaris suum , Parasitos , Animais , Ascaríase/parasitologia , Citocinas , Inflamação , Fígado/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico
3.
Infect Immun ; 90(2): e0059521, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34807734

RESUMO

Ascariasis is a neglected tropical disease that is widespread in the world and has important socioeconomic impacts. The presence of various stages of worm development in the pulmonary and intestinal mucosae induces a humoral and cellular immune response. However, although there is much evidence of the protective role of mucosal immunity against various pathogens, including helminths, there is still a gap in the knowledge about the immune response and the mechanisms of action that are involved in protection against diseases, especially in the initial phase of ascariasis. Thus, the aim of this study was to evaluate the kinetic aspects of the immune parasitological parameters in intestinal and pulmonary mucosae in male mice with early ascariasis. Therefore, two mouse strains that showed different susceptibilities to ascariasis (BALB/c and C57BL/6J) when experimentally infected with 2,500 infective eggs of Ascaris suum from time point 0 were examined: the immune parasitological parameters were evaluated each 2 days after infection over a period of 12 days. The results were suggestive of a synergetic action of intestinal and pulmonary secretory IgA (S-IgA) contributing to protection against early ascariasis by reducing the amount of migrating larvae as well as the influx of leukocytes in the lung and the consequent impairment of pulmonary capacity.


Assuntos
Ascaríase , Ascaris suum , Parasitos , Pneumonia , Doenças dos Suínos , Animais , Ascaris suum/genética , Patrimônio Genético , Imunoglobulina A Secretora , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Suínos
4.
PLoS Negl Trop Dis ; 15(12): e0010050, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914687

RESUMO

Ascariasis is one of the most common infections in the world and associated with significant global morbidity. Ascaris larval migration through the host's lungs is essential for larval development but leads to an exaggerated type-2 host immune response manifesting clinically as acute allergic airway disease. However, whether Ascaris larval migration can subsequently lead to chronic lung diseases remains unknown. Here, we demonstrate that a single episode of Ascaris larval migration through the host lungs induces a chronic pulmonary syndrome of type-2 inflammatory pathology and emphysema accompanied by pulmonary hemorrhage and chronic anemia in a mouse model. Our results reveal that a single episode of Ascaris larval migration through the host lungs leads to permanent lung damage with systemic effects. Remote episodes of ascariasis may drive non-communicable lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and chronic anemia in parasite endemic regions.


Assuntos
Anemia/parasitologia , Ascaríase/parasitologia , Ascaris suum/fisiologia , Pneumopatias/parasitologia , Anemia/genética , Anemia/imunologia , Anemia/patologia , Animais , Ascaríase/genética , Ascaríase/imunologia , Ascaríase/patologia , Ascaris suum/genética , Doença Crônica , Citocinas/genética , Citocinas/imunologia , Feminino , Humanos , Larva/genética , Larva/fisiologia , Pulmão/imunologia , Pulmão/parasitologia , Pulmão/patologia , Pneumopatias/genética , Pneumopatias/imunologia , Pneumopatias/patologia , Camundongos , Camundongos Endogâmicos BALB C
5.
PLoS Pathog ; 17(11): e1010067, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34784389

RESUMO

Human ascariasis is the most prevalent but neglected tropical disease in the world, affecting approximately 450 million people. The initial phase of Ascaris infection is marked by larval migration from the host's organs, causing mechanical injuries followed by an intense local inflammatory response, which is characterized mainly by neutrophil and eosinophil infiltration, especially in the lungs. During the pulmonary phase, the lesions induced by larval migration and excessive immune responses contribute to tissue remodeling marked by fibrosis and lung dysfunction. In this study, we investigated the relationship between SIgA levels and eosinophils. We found that TLR2 and TLR4 signaling induces eosinophils and promotes SIgA production during Ascaris suum infection. Therefore, control of parasite burden during the pulmonary phase of ascariasis involves eosinophil influx and subsequent promotion of SIgA levels. In addition, we also demonstrate that eosinophils also participate in the process of tissue remodeling after lung injury caused by larval migration, contributing to pulmonary fibrosis and dysfunction in re-infected mice. In conclusion, we postulate that eosinophils play a central role in mediating host innate and humoral immune responses by controlling parasite burden, tissue inflammation, and remodeling during Ascaris suum infection. Furthermore, we suggest that the use of probiotics can induce eosinophilia and SIgA production and contribute to controlling parasite burden and morbidity of helminthic diseases with pulmonary cycles.


Assuntos
Ascaríase/imunologia , Ascaris suum/imunologia , Eosinófilos/fisiologia , Imunoglobulina A Secretora/metabolismo , Pneumonia/prevenção & controle , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Ascaríase/metabolismo , Ascaríase/parasitologia , Feminino , Imunoglobulina A Secretora/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pneumonia/imunologia , Pneumonia/parasitologia , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
6.
Microbes Infect ; 23(8): 104836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34020024

RESUMO

Ascaris lumbricoides and Ascaris suum are two closely related parasites that infect humans and pigs. The zoonotic potential of A. suum has been a matter of debate for decades. Here we sought to investigate the potential human infection by A. suum and its immunological alterations. We orally infected five healthy human subjects with eggs embraced by A. suum. The infection was monitored for symptoms and possible respiratory changes, by an interdisciplinary health team. Parasitological, hematological analyses, serum immunoglobulin, cytokine profiles, and gene expression were evaluated during the infection. Our results show that A. suum is able to infect and complete the cycle in humans causing A. lumbricoides similar symptoms, including, cough, headache, diarrhea, respiratory discomfort and chest x-ray alterations coinciding with larvae migration in the lungs. We also observed activation of the immune system with production of IgM and IgG and a Th2/Th17 response with downregulation of genes related to Th1 and apoptosis. PCA (Principal componts analysis) show that infection with A. suum leads to a change in the immune landscape of the human host. Our data reinforce the zoonotic capacity of A. suum and bring a new perspective on the understanding of the immune response against this parasite.


Assuntos
Ascaríase , Ascaris suum , Doenças dos Suínos , Animais , Ascaríase/parasitologia , Ascaris suum/fisiologia , Humanos , Larva/fisiologia , Suínos
7.
Parasitology ; : 1-10, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33843506

RESUMO

Human ascariasis is the most common and prevalent neglected tropical disease and is estimated that ~819 million people are infected around the globe, accounting for 0.861 million years of disability-adjusted life years in 2017. Even with the existence of highly effective drugs, the constant presence of infective parasite eggs in the environment contribute to a high reinfection rate after treatment. Due to its high prevalence and broad geographic distribution Ascaris infection is associated with a variety of co-morbidities and co-infections. Here, we provide data from both experimental models and humans studies that illustrate how complex is the interaction of Ascaris with the host immune system, especially, in the context of reinfections, co-infections and associated co-morbidities.

8.
Parasitology ; 148(14): 1795-1805, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35586777

RESUMO

Ascariasis is the most prevalent helminth infection in the world and leads to significant, life-long morbidity, particularly in young children. Current efforts to control and eradicate ascariasis in endemic regions have been met with significant challenges including high-rates of re-infection and potential development of anthelminthic drug resistance. Vaccines against ascariasis are a key tool that could break the transmission cycle and lead to disease eradication globally. Evolution of the Ascaris vaccine pipeline has progressed, however no vaccine product has been brought to human clinical trials to date. Advancement in recombinant protein technology may provide the first step in generating an Ascaris vaccine as well as a pan-helminthic vaccine ready for human trials. However, several roadblocks remain and investment in new technologies will be important to develop a successful human Ascaris vaccine that is critically needed to prevent significant morbidity in Ascaris-endemic regions around the world.


Assuntos
Ascaríase , Desenvolvimento de Vacinas , Vacinas , Animais , Ascaríase/prevenção & controle , Ascaris , Humanos
9.
Front Immunol ; 12: 788185, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992603

RESUMO

Control of human ascariasis, the most prevalent neglected tropical disease globally affecting 450 million people, mostly relies on mass drug administration of anthelmintics. However, chemotherapy alone is not efficient due to the high re-infection rate for people who live in the endemic area. The development of a vaccine that reduces the intensity of infection and maintains lower morbidity should be the primary target for infection control. Previously, our group demonstrated that immunization with crude Ascaris antigens in mice induced an IgG-mediated protective response with significant worm reduction. Here, we aimed to develop a multipeptide chimera vaccine based on conserved B-cell epitopes predicted from 17 common helminth proteomes using a bioinformatics algorithm. More than 480 B-cell epitopes were identified that are conserved in all 17 helminths. The Ascaris-specific epitopes were selected based on their reactivity to the pooled sera of mice immunized with Ascaris crude antigens or infected three times with A. suum infective eggs. The top 35 peptides with the strongest reactivity to Ascaris immune serum were selected to construct a chimeric antigen connected in sequence based on conformation. This chimera, called ASCVac-1, was produced as a soluble recombinant protein in an Escherichia coli expression system and, formulated with MPLA, was used to immunize mice. Mice immunized with ASCVac-1/MPLA showed around 50% reduced larvae production in the lungs after being challenged with A. suum infective eggs, along with significantly reduced inflammation and lung tissue/function damage. The reduced parasite count and pathology in infected lungs were associated with strong Th2 immune responses characterized by the high titers of antigen-specific IgG and its subclasses (IgG1, IgG2a, and IgG3) in the sera and significantly increased IL-4, IL-5, IL-13 levels in lung tissues. The reduced IL-33 titers and stimulated eosinophils were also observed in lung tissues and may also contribute to the ASCVac-1-induced protection. Taken together, the preclinical trial with ASCVac-1 chimera in a mouse model demonstrated its significant vaccine efficacy associated with strong IgG-based Th2 responses, without IgE induction, thus reducing the risk of an allergic response. All results suggest that the multiepitope-based ASCVac-1 chimera is a promising vaccine candidate against Ascaris sp. infections.


Assuntos
Antígenos de Helmintos/administração & dosagem , Ascaríase/prevenção & controle , Ascaris suum/imunologia , Doenças Negligenciadas/prevenção & controle , Vacinas Protozoárias/administração & dosagem , Animais , Antígenos de Helmintos/imunologia , Ascaríase/imunologia , Ascaríase/parasitologia , Ascaríase/patologia , Ascaris suum/isolamento & purificação , Feminino , Humanos , Pulmão/imunologia , Pulmão/parasitologia , Pulmão/patologia , Camundongos , Doenças Negligenciadas/imunologia , Doenças Negligenciadas/parasitologia , Doenças Negligenciadas/patologia , Vacinas Protozoárias/imunologia , Células Th2/imunologia , Eficácia de Vacinas , Vacinas de Subunidades/administração & dosagem , Vacinas de Subunidades/imunologia
10.
Front Immunol, v. 12, 788185, dez. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4089

RESUMO

Control of human ascariasis, the most prevalent neglected tropical disease globally affecting 450 million people, mostly relies on mass drug administration of anthelmintics. However, chemotherapy alone is not efficient due to the high re-infection rate for people who live in the endemic area. The development of a vaccine that reduces the intensity of infection and maintains lower morbidity should be the primary target for infection control. Previously, our group demonstrated that immunization with crude Ascaris antigens in mice induced an IgG-mediated protective response with significant worm reduction. Here, we aimed to develop a multipeptide chimera vaccine based on conserved B-cell epitopes predicted from 17 common helminth proteomes using a bioinformatics algorithm. More than 480 B-cell epitopes were identified that are conserved in all 17 helminths. The Ascaris-specific epitopes were selected based on their reactivity to the pooled sera of mice immunized with Ascaris crude antigens or infected three times with A. suum infective eggs. The top 35 peptides with the strongest reactivity to Ascaris immune serum were selected to construct a chimeric antigen connected in sequence based on conformation. This chimera, called ASCVac-1, was produced as a soluble recombinant protein in an Escherichia coli expression system and, formulated with MPLA, was used to immunize mice. Mice immunized with ASCVac-1/MPLA showed around 50% reduced larvae production in the lungs after being challenged with A. suum infective eggs, along with significantly reduced inflammation and lung tissue/function damage. The reduced parasite count and pathology in infected lungs were associated with strong Th2 immune responses characterized by the high titers of antigen-specific IgG and its subclasses (IgG1, IgG2a, and IgG3) in the sera and significantly increased IL-4, IL-5, IL-13 levels in lung tissues. The reduced IL-33 titers and stimulated eosinophils were also observed in lung tissues and may also contribute to the ASCVac-1-induced protection. Taken together, the preclinical trial with ASCVac-1 chimera in a mouse model demonstrated its significant vaccine efficacy associated with strong IgG-based Th2 responses, without IgE induction, thus reducing the risk of an allergic response. All results suggest that the multiepitope-based ASCVac-1 chimera is a promising vaccine candidate against Ascaris sp. infections.

11.
PLoS Negl Trop Dis ; 13(11): e0007896, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31765381

RESUMO

Ascariasis is considered the most neglected tropical disease, and is a major problem for the public health system. However, idiopathic pulmonary fibrosis (IPF) is a result of chronic extracellular deposition of matrix in the pulmonary parenchyma, and thickening of the alveolar septa, which reduces alveolar gas exchange. Considering the high rates of ascariasis and pulmonary fibrosis, we believe that these two diseases may co-exist and possibly lead to comorbidities. We therefore investigated the mechanisms involved in comorbidity of Ascaris suum (A. suum) infection, which could interfere with the progression of pulmonary fibrosis. In addition, we evaluated whether a previous lung fibrosis could interfere with the pulmonary cycle of A. suum in mice. The most important findings related to comorbidity in which A. suum infection exacerbated pulmonary and liver injury, inflammation and dysfunction, but did not promote excessive fibrosis in mice during the investigated comorbidity period. Interestingly, we found that pulmonary fibrosis did not alter the parasite cycle that transmigrated preferentially through preserved but not fibrotic areas of the lungs. Collectively, our results demonstrate that A. suum infection leads to comorbidity, and contributes to the aggravation of pulmonary dysfunction during pulmonary fibrosis, which also leads to significant liver injury and inflammation, without changing the A. suum cycle in the lungs.


Assuntos
Ascaríase/complicações , Ascaríase/patologia , Hepatopatias/patologia , Fibrose Pulmonar/complicações , Fibrose Pulmonar/patologia , Animais , Ascaris suum/isolamento & purificação , Modelos Animais de Doenças , Feminino , Inflamação/patologia , Pulmão/parasitologia , Pulmão/patologia , Camundongos Endogâmicos C57BL
12.
Front Immunol ; 9: 2535, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30473693

RESUMO

Human ascariasis has a global and cosmopolitan distribution, and has been characterized as the most prevalent neglected tropical disease worldwide. The development of a preventive vaccine is highly desirable to complement current measures required for this parasitic infection control and to reduce chronic childhood morbidities. In the present study, we describe the mechanism of protection elicited by a preventive vaccine against ascariasis. Vaccine efficacy was evaluated after immunization with three different Ascaris suum antigen extracts formulated with monophosphoryl lipid A (MPLA) as an adjuvant: crude extract of adult worm (ExAD); crude extract of adult worm cuticle (CUT); and crude extract of infective larvae (L3) (ExL3). Immunogenicity elicited by immunization was assessed by measuring antibody responses, cytokine production, and influx of tissue inflammatory cells. Vaccine efficacy was evaluated by measuring the reductions in the numbers of larvae in the lungs of immunized BALB/c mice that were challenged with A. suum eggs. Moreover, lung physiology and functionality were tested by spirometry to determine clinical efficacy. Finally, the role of host antibody mediated protection was determined by passive transfer of serum from immunized mice. Significant reductions in the total number of migrating larvae were observed in mice immunized with ExL3 61% (p < 0.001), CUT 59% (p < 0.001), and ExAD 51% (p < 0.01) antigens in comparison with non-immunized mice. For the Ascaris antigen-specific IgG antibody levels, a significant and progressive increase was observed with each round of immunization, in association with a marked increase of IgG1 and IgG3 subclasses. Moreover, a significant increase in concentration of IL-5 and IL-10 (pre-challenge) in the blood and IL-10 in the lung tissue (post-challenge) was induced by CUT immunization. Finally, ExL3 and CUT-immunized mice showed a marked improvement in lung pathology and tissue fibrosis as well as reduced pulmonary dysfunction induced by Ascaris challenge, when compared to non-immunized mice. Moreover, the passive transfer of specific IgG antibodies from ExL3, CUT, and ExAD elicited a protective response in naïve mice, with significant reductions in parasite burdens in lungs of 65, 64, and 64%, respectively. Taken together, these studies indicated that IgG antibodies contribute to protective immunity.


Assuntos
Ascaris suum/imunologia , Imunoglobulina G/imunologia , Substâncias Protetoras/farmacologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/imunologia , Ascaríase/imunologia , Ascaríase/parasitologia , Feminino , Imunidade/efeitos dos fármacos , Imunidade/imunologia , Imunização/métodos , Interleucina-10/imunologia , Larva/imunologia , Pulmão/imunologia , Pulmão/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Suínos/imunologia , Suínos/parasitologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/parasitologia , Vacinação/métodos , Vacinas/imunologia
13.
Infect Immun ; 86(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30249744

RESUMO

Ascaris lumbricoides (roundworm) is the most common helminth infection globally and a cause of lifelong morbidity that may include allergic airway disease, an asthma phenotype. We hypothesize that Ascaris larval migration through the lungs leads to persistent airway hyperresponsiveness (AHR) and type 2 inflammatory lung pathology despite resolution of infection that resembles allergic airway disease. Mice were infected with Ascaris by oral gavage. Lung AHR was measured by plethysmography and histopathology with hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) stains, and cytokine concentrations were measured by using Luminex Magpix. Ascaris-infected mice were compared to controls or mice with allergic airway disease induced by ovalbumin (OVA) sensitization and challenge (OVA/OVA). Ascaris-infected mice developed profound AHR starting at day 8 postinfection (p.i.), peaking at day 12 p.i. and persisting through day 21 p.i., despite resolution of infection, which was significantly increased compared to controls and OVA/OVA mice. Ascaris-infected mice had a robust type 2 cytokine response in both the bronchoalveolar lavage (BAL) fluid and lung tissue, similar to that of the OVA/OVA mice, including interleukin-4 (IL-4) (P < 0.01 and P < 0.01, respectively), IL-5 (P < 0.001 and P < 0.001), and IL-13 (P < 0.001 and P < 0.01), compared to controls. By histopathology, Ascaris-infected mice demonstrated early airway remodeling similar to, but more profound than, that in OVA/OVA mice. We found that Ascaris larval migration causes significant pulmonary damage, including AHR and type 2 inflammatory lung pathology that resembles an extreme form of allergic airway disease. Our findings indicate that ascariasis may be an important cause of allergic airway disease in regions of endemicity.


Assuntos
Ascaríase/fisiopatologia , Hipersensibilidade/parasitologia , Pulmão/patologia , Hipersensibilidade Respiratória/parasitologia , Animais , Ascaríase/imunologia , Ascaris/patogenicidade , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Feminino , Interleucina-13/imunologia , Interleucina-4/imunologia , Interleucina-5/imunologia , Larva/patogenicidade , Pulmão/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Células Th2/imunologia
14.
Front Immunol, v. 9, 2535, 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2606

RESUMO

Human ascariasis has a global and cosmopolitan distribution, and has been characterized as the most prevalent neglected tropical disease worldwide. The development of a preventive vaccine is highly desirable to complement current measures required for this parasitic infection control and to reduce chronic childhood morbidities. In the present study, we describe the mechanism of protection elicited by a preventive vaccine against ascariasis. Vaccine efficacy was evaluated after immunization with three different Ascaris suum antigen extracts formulated with monophosphoryl lipid A (MPLA) as an adjuvant: crude extract of adult worm (ExAD); crude extract of adult worm cuticle (CUT); and crude extract of infective larvae (L3) (ExL3). Immunogenicity elicited by immunization was assessed by measuring antibody responses, cytokine production, and influx of tissue inflammatory cells. Vaccine efficacy was evaluated by measuring the reductions in the numbers of larvae in the lungs of immunized BALB/c mice that were challenged with A. suum eggs. Moreover, lung physiology and functionality were tested by spirometry to determine clinical efficacy. Finally, the role of host antibody mediated protection was determined by passive transfer of serum from immunized mice. Significant reductions in the total number of migrating larvae were observed in mice immunized with ExL3 61% (p < 0.001), CUT 59% (p < 0.001), and ExAD 51% (p < 0.01) antigens in comparison with non-immunized mice. For the Ascaris antigen-specific IgG antibody levels, a significant and progressive increase was observed with each round of immunization, in association with a marked increase of IgG1 and IgG3 subclasses. Moreover, a significant increase in concentration of IL-5 and IL-10 (pre-challenge) in the blood and IL-10 in the lung tissue (post-challenge) was induced by CUT immunization. Finally, ExL3 and CUT-immunized mice showed a marked improvement in lung pathology and tissue fibrosis as well as reduced pulmonary dysfunction induced by Ascaris challenge, when compared to non-immunized mice. Moreover, the passive transfer of specific IgG antibodies from ExL3, CUT, and ExAD elicited a protective response in naïve mice, with significant reductions in parasite burdens in lungs of 65, 64, and 64%, respectively. Taken together, these studies indicated that IgG antibodies contribute to protective immunity.

15.
Front. Immunol. ; 9: 2535, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15682

RESUMO

Human ascariasis has a global and cosmopolitan distribution, and has been characterized as the most prevalent neglected tropical disease worldwide. The development of a preventive vaccine is highly desirable to complement current measures required for this parasitic infection control and to reduce chronic childhood morbidities. In the present study, we describe the mechanism of protection elicited by a preventive vaccine against ascariasis. Vaccine efficacy was evaluated after immunization with three different Ascaris suum antigen extracts formulated with monophosphoryl lipid A (MPLA) as an adjuvant: crude extract of adult worm (ExAD); crude extract of adult worm cuticle (CUT); and crude extract of infective larvae (L3) (ExL3). Immunogenicity elicited by immunization was assessed by measuring antibody responses, cytokine production, and influx of tissue inflammatory cells. Vaccine efficacy was evaluated by measuring the reductions in the numbers of larvae in the lungs of immunized BALB/c mice that were challenged with A. suum eggs. Moreover, lung physiology and functionality were tested by spirometry to determine clinical efficacy. Finally, the role of host antibody mediated protection was determined by passive transfer of serum from immunized mice. Significant reductions in the total number of migrating larvae were observed in mice immunized with ExL3 61% (p < 0.001), CUT 59% (p < 0.001), and ExAD 51% (p < 0.01) antigens in comparison with non-immunized mice. For the Ascaris antigen-specific IgG antibody levels, a significant and progressive increase was observed with each round of immunization, in association with a marked increase of IgG1 and IgG3 subclasses. Moreover, a significant increase in concentration of IL-5 and IL-10 (pre-challenge) in the blood and IL-10 in the lung tissue (post-challenge) was induced by CUT immunization. Finally, ExL3 and CUT-immunized mice showed a marked improvement in lung pathology and tissue fibrosis as well as reduced pulmonary dysfunction induced by Ascaris challenge, when compared to non-immunized mice. Moreover, the passive transfer of specific IgG antibodies from ExL3, CUT, and ExAD elicited a protective response in naïve mice, with significant reductions in parasite burdens in lungs of 65, 64, and 64%, respectively. Taken together, these studies indicated that IgG antibodies contribute to protective immunity.

16.
PLoS Negl Trop Dis ; 11(7): e0005769, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28708895

RESUMO

BACKGROUND: Ascariasis remains the most common helminth infection in humans. As an alternative or complementary approach to global deworming, a pan-anthelminthic vaccine is under development targeting Ascaris, hookworm, and Trichuris infections. As16 and As14 have previously been described as two genetically related proteins from Ascaris suum that induced protective immunity in mice when formulated with cholera toxin B subunit (CTB) as an adjuvant, but the exact protective mechanism was not well understood. METHODOLOGY/PRINCIPAL FINDINGS: As16 and As14 were highly expressed as soluble recombinant proteins (rAs16 and rAs14) in Pichia pastoris. The yeast-expressed rAs16 was highly recognized by immune sera from mice infected with A. suum eggs and elicited 99.6% protection against A. suum re-infection. Mice immunized with rAs16 formulated with ISA720 displayed significant larva reduction (36.7%) and stunted larval development against A. suum eggs challenge. The protective immunity was associated with a predominant Th2-type response characterized by high titers of serological IgG1 (IgG1/IgG2a > 2000) and high levels of IL-4 and IL-5 produced by restimulated splenocytes. A similar level of protection was observed in mice immunized with rAs16 formulated with alum (Alhydrogel), known to induce mainly a Th2-type immune response, whereas mice immunized with rAs16 formulated with MPLA or AddaVax, both known to induce a Th1-type biased response, were not significantly protected against A. suum infection. The rAs14 protein was not recognized by A. suum infected mouse sera and mice immunized with rAs14 formulated with ISA720 did not show significant protection against challenge infection, possibly due to the protein's inaccessibility to the host immune system or a Th1-type response was induced which would counter a protective Th2-type response. CONCLUSIONS/SIGNIFICANCE: Yeast-expressed rAs16 formulated with ISA720 or alum induced significant protection in mice against A. suum egg challenge that associates with a Th2-skewed immune response, suggesting that rAS16 could be a feasible vaccine candidate against ascariasis.


Assuntos
Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/uso terapêutico , Ascaríase/prevenção & controle , Células Th2/imunologia , Vacinas/uso terapêutico , Adjuvantes Imunológicos , Animais , Antígenos de Helmintos/imunologia , Ascaris suum , Toxina da Cólera/imunologia , Feminino , Imunoglobulina G/sangue , Interleucina-4/imunologia , Interleucina-5/imunologia , Larva , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/uso terapêutico , Saccharomyces cerevisiae , Análise de Sequência , Vacinação
17.
Int J Parasitol ; 47(1): 1-10, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003150

RESUMO

The aim of this work was to elucidate the immunopathological mechanisms of how helminths may influence the course of a viral infection, using a murine model. Severe virulence, a relevant increase in the virus titres in the lung and a higher mortality rate were observed in Ascaris and Vaccinia virus (VACV) co-infected mice, compared with VACV mono-infected mice. Immunopathological analysis suggested that the ablation of CD8+ T cells, the marked reduction of circulating CD4+ T cells producing IFN-γ, and the robust pulmonary inflammation were associated with the increase of morbidity/mortality in co-infection and subsequently with the negative impact of concomitant pulmonary ascariasis and respiratory VACV infection for the host. On the other hand, when evaluating the impact of the co-infection on the parasitic burden, co-infected mice presented a marked decrease in the total number of migrating Ascaris lung-stage larvae in comparison with Ascaris mono-infection. Taken together, our major findings suggest that Ascaris and VACV co-infection may potentiate the virus-associated pathology by the downmodulation of the VACV-specific immune response. Moreover, this study provides new evidence of how helminth parasites may influence the course of a coincident viral infection.


Assuntos
Ascaríase/virologia , Ascaris/imunologia , Coinfecção/imunologia , Pneumonia/parasitologia , Vírus Vaccinia/imunologia , Vaccinia/etiologia , Animais , Ascaríase/imunologia , Linfócitos T CD8-Positivos/imunologia , Coinfecção/parasitologia , Coinfecção/virologia , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Interferon gama/imunologia , Larva/parasitologia , Pulmão/imunologia , Pulmão/parasitologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/imunologia , Pneumonia/virologia , Suínos , Vaccinia/imunologia , Vaccinia/patologia , Vaccinia/virologia , Carga Viral
18.
Parasit Vectors ; 8: 354, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26135397

RESUMO

BACKGROUND: Nematodes of the genus Toxocara are cosmopolitan roundworms frequently found in dogs and cats. Toxocara spp. can accidentally infect humans and cause a zoonosis called human toxocariasis, which is characterized by visceral, ocular or cerebral migration of larval stages of the parasite, without completing its life cycle. In general, chronic nematode infections induce a polarized TH2 immune response. However, during the initial phase of infection, a strong pro-inflammatory response is part of the immunological profile and might determine the outcome and/or pathology of the infection. METHODS: Parasitological aspects and histopathology during larval migration were evaluated after early T. canis experimental infection of BALB/c mice, which were inoculated via the intra-gastric route with a single dose of 1000 fully embryonated eggs. Innate immune responses and systemic cytokine patterns (TH1, TH2, TH17 and regulatory cytokines) were determined at different times after experimental challenge by sandwich ELISA. RESULTS: We found that experimental infection with T. canis induced a mix of innate inflammatory/TH17/TH2 responses during early infection, with a predominance of the latter. The TH2 response was evidenced by significant increases in cytokines such as IL-4, IL-5, IL-13 and IL-33, in addition to increasing levels of IL-6 and IL-17. No significant increases were observed for IL-10, TNF-α or IFN-γ levels. In parallel, parasitological analysis clearly revealed the pattern of larval migration through the mouse organs, starting from the liver in the first 24 h of infection, reaching the peak in the lungs on the 3rd day of infection and finally being found numerously in the brain after 5 days of infection. Peripheral leukocytosis, characterized by early neutrophilia and subsequent eosinophilia, was remarkable during early infection. The tissue damage induced by larvae was evidenced by histopathological analysis of the organs at different time points of infection. In all of the affected organs, larval migration induced intense inflammatory infiltrate and hemorrhage. CONCLUSION: In conclusion, these new insights into early T. canis infection in mice presented here enabled a better understanding of the immunopathological events that might also occur during human toxocariasis, thus contributing to future strategies of diagnosis and control.


Assuntos
Toxocara canis/fisiologia , Toxocaríase/imunologia , Toxocaríase/parasitologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-17/imunologia , Interleucina-4/imunologia , Interleucina-5/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células Th17/imunologia , Células Th2/imunologia , Toxocaríase/patologia
19.
Malar J ; 14: 5, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25559491

RESUMO

BACKGROUND: Reduction in the number of circulating blood lymphocytes (lymphocytopaenia) has been reported during clinical episodes of malaria and is normalized after treatment with anti-malaria drugs. While this phenomenon is well established in malaria infection, the underlying mechanisms are still not fully elucidated. In the present study, the occurrence of apoptosis and its pathways in CD4+ T cells was investigated in naturally Plasmodium vivax-infected individuals from a Brazilian endemic area (Porto Velho - RO). METHODS: Blood samples were collected from P. vivax-infected individuals and healthy donors. The apoptosis was characterized by cell staining with Annexin V/FITC and propidium iodide and the apoptosis-associated gene expression profile was carried out using RT2 Profiler PCR Array-Human Apoptosis. The plasma TNF level was determined by ELISA. The unpaired t-test or Mann-Whitney test was applied according to the data distribution. RESULTS: Plasmodium vivax-infected individuals present low number of leukocytes and lymphocytes with a higher percentage of CD4+ T cells in early and/or late apoptosis. Increased gene expression was observed for TNFRSF1B and Bid, associated with a reduction of Bcl-2, in individuals with P. vivax malaria. Furthermore, these individuals showed increased plasma levels of TNF compared to malaria-naive donors. CONCLUSIONS: The results of the present study suggest that P. vivax infection induces apoptosis of CD4+ T cells mediated by two types of signaling: by activation of the TNFR1 death receptor (extrinsic pathway), which is amplified by Bid, and by decreased expression of the anti-apoptotic protein Bcl-2 (intrinsic pathway). The T lymphocytes apoptosis could reflect a strategy of immune evasion triggered by the parasite, enabling their persistence but also limiting the occurrence of immunopathology.


Assuntos
Apoptose , Linfócitos T CD4-Positivos/fisiologia , Interações Hospedeiro-Patógeno , Malária Vivax/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Adulto , Brasil , Técnicas Citológicas , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais , Adulto Jovem
20.
Int J Parasitol ; 43(9): 697-706, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23665127

RESUMO

Studies related to the immunobiological aspects of an Ascaris spp. infection are still scarce, especially those that aim to elucidate the early events of the immune response. In this study, we demonstrated a novel standardized method for early experimental Ascaris infection, providing additional information about the infectivity of eggs embryonated in vitro as well as the influence of host age on development of the infection. Finally, we characterised the immunopathology of early infection, focusing on the tissue and systemic cytokine profiles and the histopathology of infection in the lungs of BALB/c mice. Our results demonstrated that the highest egg infectivity occurred on the 100th and 200th days of in vitro embryonation and that 8 week-old BALB/c mice were more susceptible to infection than 16 week-old mice. Ascaris-infected mice showed an early, significant level of IL-5 production in the lungs 4 days p.i., followed by an increase in the level of neutrophils in the inflammatory infiltrate at 8 days p.i, which was correlated with the peak of larval migration in the tissue and a significant level of IL-6 production. The inflammatory infiltrate in the lungs was gradually replaced by mononuclear cells and eosinophils on the 10th and 12th days p.i., respectively, and an increase in TNF levels was observed. The downmodulation of systemic TCD4(+) cell numbers might suggest that T cell hyporesponsiveness was induced by the Ascaris spp. larvae, contributing to safeguarding parasite survival during larval migration. Taken together, the novel aspects of Ascaris infection presented here enabled a better understanding of the immunopathological events during larval migration, providing insight for further studies focused on immunisation and immunoprophylatic assays.


Assuntos
Ascaríase/imunologia , Ascaríase/parasitologia , Ascaris suum , Envelhecimento , Animais , Ascaríase/patologia , Intestinos/parasitologia , Fígado/parasitologia , Pulmão/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óvulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...